In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.

01
Schulz, M. A., Yeo, B. T., Vogelstein, J. T., Mourao-Miranada, J., Kather, J. N., Kording, K., ... & Bzdok, D.

Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets

Aug 25, 2020 | Nature communications
02
Schulz, M. A., Chapman-Rounds, M., Verma, M., Bzdok, D., & Georgatzis, K.

Inferring disease subtypes from clusters in explanation space

Jul 30, 2020 | Scientific Reports
03
Stark, D., & Ritter, K.

AIM and Gender Aspects

Jan 01, 2020 | Artificial Intelligence in Medicine
04
Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification

Oct 24, 2019 | MICCAI 2019
05
Srivastava, S., Eitel, F., & Ritter, K.

Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach

Oct 10, 2019 | Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction
06
Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., ... & Ritter, K.

Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

Sep 06, 2019
07
Weygandt, M., Behrens, J., Brasanac, J., Söder, E., Meyer-Arndt, L., Wakonig, K., ... & Paul, F.

Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis

Aug 01, 2019 | Multiple sclerosis and related disorders
08
Böhle, M., Eitel, F., Weygandt, M., & Ritter, K.

Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer's disease classification

Jul 31, 2019 | Frontiers in aging neuroscience