In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.

01
Kübler, D., Wellmann, S. K., Kaminski, J., Skowronek, C., Schneider, G. H., Neumann, W. J., ... & Kühn, A.

Nucleus basalis of Meynert predicts cognition after deep brain stimulation in Parkinson's disease

Jan 01, 2022 | Parkinsonism & Related Disorders
02
Eitel, F., Albrecht, J. P., Weygandt, M., Paul, F., & Ritter, K.

Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data

Dec 27, 2021 | scientific reports
03
Schulz, M. A., Baier, S., Timmermann, B., Bzdok, D., & Witt, K.

A cognitive fingerprint in human random number generation

Oct 12, 2021 | Scientific reports
04
Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative

MRI Image Registration Considerably Improves CNN-Based Disease Classification

Sep 21, 2021 | Machine Learning in Clinical Neuroimaging 2021
05
Chapman-Rounds, M., Bhatt, U., Pazos, E., Schulz, M. A., & Georgatzis, K.

FIMAP: Feature Importance by Minimal Adversarial Perturbation

May 18, 2021 | AAAI Conference on Artificial Intelligence
06
Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.

Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research

May 01, 2021 | Experimental Neurology
07
Ritter, M., Ott, D. V., Paul, F., Haynes, J. D., & Ritter, K.

COVID-19: a simple statistical model for predicting intensive care unit load in exponential phases of the disease

Mar 03, 2021 | Scientific Reports
08
Wakonig, K., Eitel, F., Ritter, K., Hetzer, S., Schmitz-Hübsch, T., Bellmann-Strobl, J., ... & Weygandt, M.

Altered coupling of psychological relaxation and regional volume of brain reward areas in multiple sclerosis

Oct 06, 2020 | Frontiers in Neurology
09
Schulz, M. A., Yeo, B. T., Vogelstein, J. T., Mourao-Miranada, J., Kather, J. N., Kording, K., ... & Bzdok, D.

Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets

Aug 25, 2020 | Nature communications
10
Schulz, M. A., Chapman-Rounds, M., Verma, M., Bzdok, D., & Georgatzis, K.

Inferring disease subtypes from clusters in explanation space

Jul 30, 2020 | Scientific Reports
11
Stark, D., & Ritter, K.

AIM and Gender Aspects

Jan 01, 2020 | Artificial Intelligence in Medicine
12
Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification

Oct 24, 2019 | MICCAI 2019
13
Srivastava, S., Eitel, F., & Ritter, K.

Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach

Oct 10, 2019 | Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction
14
Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., ... & Ritter, K.

Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

Sep 06, 2019
15
Weygandt, M., Behrens, J., Brasanac, J., Söder, E., Meyer-Arndt, L., Wakonig, K., ... & Paul, F.

Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis

Aug 01, 2019 | Multiple sclerosis and related disorders
16
Böhle, M., Eitel, F., Weygandt, M., & Ritter, K.

Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer's disease classification

Jul 31, 2019 | Frontiers in aging neuroscience