In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.
      
          01
        
    
    
      
      
          Schulz, M. A., Koch, A., Guarino, V. E., Kainmueller, D., & Ritter, K
        
      
  Data augmentation via partial nonlinear registration for brain-age prediction
      
          02
        
    
    
      
      
          Chien, C., Seiler, M., Eitel, F., Schmitz-Hübsch, T., Paul, F., & Ritter, K.
        
      
  Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity
      
          03
        
    
    
      
      
          Rane, R. P., de Man, E. F., Kim, J., Görgen, K., Tschorn, M., Rapp, M. A., ... & IMAGEN consortium.
        
      
  Structural differences in adolescent brains can predict alcohol misuse
      
          04
        
    
    
      
      
          Subramaniam, P., Kossen, T., Ritter, K., Hennemuth, A., Hildebrand, K., Hilbert, A., ... & Madai, V. I.
        
      
  Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks
      
          05
        
    
    
      
      
          Rane, R. P., Heinz, A., & Ritter, K
        
      
  AIM in Alcohol and Drug Dependence
      
          06
        
    
    
      
      
          Brasanac, J., Ramien, C., Gamradt, S., Taenzer, A., Glau, L., Ritter, K. et al
        
      
  Immune signature of multiple sclerosis-associated depression
      
          07
        
    
    
      
      
          Kübler, D., Wellmann, S. K., Kaminski, J., Skowronek, C., Schneider, G. H., Neumann, W. J., ... & Kühn, A.