In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.
01
Fast, L., Temuulen, U., Villringer, K., Kufner, A., Ali, H.F., Siebert, E., Huo, S et al
Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke
02
Rane, R. P., Musial, M. P. M., Beck, A., Rapp, M., Schlagenhauf, F., Banaschewski, T., ... & IMAGEN consortium
Uncontrolled eating and sensation-seeking partially explain the prediction of future binge drinking from adolescent brain structure
03
Schulz, M. A., Koch, A., Guarino, V. E., Kainmueller, D., & Ritter, K
Data augmentation via partial nonlinear registration for brain-age prediction
04
Chien, C., Seiler, M., Eitel, F., Schmitz-Hübsch, T., Paul, F., & Ritter, K.
Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity
05
Rane, R. P., de Man, E. F., Kim, J., Görgen, K., Tschorn, M., Rapp, M. A., ... & IMAGEN consortium.
Structural differences in adolescent brains can predict alcohol misuse
06
Subramaniam, P., Kossen, T., Ritter, K., Hennemuth, A., Hildebrand, K., Hilbert, A., ... & Madai, V. I.
Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks
07
Rane, R. P., Heinz, A., & Ritter, K
AIM in Alcohol and Drug Dependence
08
Brasanac, J., Ramien, C., Gamradt, S., Taenzer, A., Glau, L., Ritter, K. et al
Immune signature of multiple sclerosis-associated depression
09
Kübler, D., Wellmann, S. K., Kaminski, J., Skowronek, C., Schneider, G. H., Neumann, W. J., ... & Kühn, A.
Nucleus basalis of Meynert predicts cognition after deep brain stimulation in Parkinson's disease
10
Eitel, F., Albrecht, J. P., Weygandt, M., Paul, F., & Ritter, K.
Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
11
Schulz, M. A., Baier, S., Timmermann, B., Bzdok, D., & Witt, K.
A cognitive fingerprint in human random number generation
12
Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative
MRI Image Registration Considerably Improves CNN-Based Disease Classification
13
Chapman-Rounds, M., Bhatt, U., Pazos, E., Schulz, M. A., & Georgatzis, K.
FIMAP: Feature Importance by Minimal Adversarial Perturbation
14
Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.
Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research
15
Ritter, M., Ott, D. V., Paul, F., Haynes, J. D., & Ritter, K.
COVID-19: a simple statistical model for predicting intensive care unit load in exponential phases of the disease
16
Wakonig, K., Eitel, F., Ritter, K., Hetzer, S., Schmitz-Hübsch, T., Bellmann-Strobl, J., ... & Weygandt, M.