In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.

01
Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification

Oct 24, 2019 | MICCAI 2019
02
Srivastava, S., Eitel, F., & Ritter, K.

Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach

Oct 10, 2019 | Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction
03
Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., ... & Ritter, K.

Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

Sep 06, 2019
04
Weygandt, M., Behrens, J., Brasanac, J., Söder, E., Meyer-Arndt, L., Wakonig, K., ... & Paul, F.

Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis

Aug 01, 2019 | Multiple sclerosis and related disorders
05
Böhle, M., Eitel, F., Weygandt, M., & Ritter, K.

Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer's disease classification

Jul 31, 2019 | Frontiers in aging neuroscience