In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.
01
Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification
02
Srivastava, S., Eitel, F., & Ritter, K.
Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach
03
Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., ... & Ritter, K.
Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
04
Weygandt, M., Behrens, J., Brasanac, J., Söder, E., Meyer-Arndt, L., Wakonig, K., ... & Paul, F.
Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis
05
Böhle, M., Eitel, F., Weygandt, M., & Ritter, K.