In the Department of Data Science we generate knowledge from data to advance neuroscience and ophthalmology.
01
Holtrup, L., Varghese, J., Schuster, A.K. et al. EyeMatics
EyeMatics—Multicenter data evaluation of real-world data with interoperable medical informatics
02
Grote, T., Freiesleben, T. & Berens, P.
Foundation models in healthcare require rethinking reliability
03
Gervelmeyer, J., Müller, S., Djoumessi, K., Merle, D., Clark, S. J., Koch, L., & Berens, P.
Interpretable-by-design Deep Survival Analysis for Disease Progression Modeling
04
Lause, J., Berens, P., Kobak, D.
The art of seeing the elephant in the room: 2D embeddings of single-cell data do make sense
05
Franke, K., Cai, C., Ponder, K., Fu, J., Sokoloski, S., Berens, P., & Tolias, A. S.
Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky.
06
Beck, J., Bosch, N., Deistler, M., Kadhim, K.L., Macke, J. H., Hennig, P., Berens, P.
Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations
07
Zouridis, I. S., Schmors, L., Fischer, K. M., Berens, P., Preston-Ferrer, P., & Burgalossi, A.
Juxtacellular recordings from identified neurons in the mouse locus coeruleus
08
Köhler, P., Fadugba, J., Berens, P., Koch, L.M.
Efficiently correcting patch-based segmentation errors to control image-level performance in retinal images
09
Wundram, A.M., Fischer, P., Wunderlich, S., Faber, H., Koch, L.M., Berens, P., Baumgartner C. F.
Leveraging Probabilistic Segmentation Models for Improved Glaucoma Diagnosis: A Clinical Pipeline Approach
10
Yaïci, R., Cieplucha, M., Bock, R. et al
ChatGPT und die deutsche Facharztprüfung für Augenheilkunde: eine Evaluierung
11
Koch, L.M., Baumgartner, C.F. & Berens, P
Distribution shift detection for the postmarket surveillance of medical AI algorithms: a retrospective simulation study
12
Ayhan, M. S., Neubauer, J., Uzel, M. M., Gelisken, F., & Berens, P.
Interpretable detection of epiretinal membrane from optical coherence tomography with deep neural networks.
13
González-Márquez, R., Schmidt, L., Schmidt, B. M., Berens, P., & Kobak, D.
The landscape of biomedical research
14
Grote, T., Berens, P.
A paradigm shift?—On the ethics of medical large language models
15
Sun, S., Koch, L. M., & Baumgartner, C. F.
Right for the Wrong Reason: Can Interpretable ML Techniques Detect Spurious Correlations?
16
Nazari, P., Damrich, S., Hamprecht, F.A.