In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.
01
Schulz, M.A., Hetzer, S., Eitel, F., Asseyer, S., Meyer-Arndt, L., Schmitz-Hübsch, T., et al
Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis
02
Vorisek, C., Stellmach, C., Mayer, P., Klopfenstein, S., Bures, D., Diehl, A., Henningsen, M., Ritter, K., Thun, S.
Artificial Intelligence Bias in Health Care: Web-Based Survey
03
Klingenberg, M., Stark, D., Eitel, F. et al
Higher performance for women than men in MRI-based Alzheimer’s disease detection
04
Wang, D., Honnorat, N., Fox, P. T., Ritter, K., Eickhoff, S. B., Seshadri, S., ... & Alzheimer’s Disease Neuroimaging Initiative
Deep neural network heatmaps capture Alzheimer’s disease patterns reported in a large meta-analysis of neuroimaging studies
05
Brandt, L., Ritter, K., Schneider-Thoma, J., Siafis, S., Montag, C., Ayrilmaz, H. et al
Predicting psychotic relapse following randomised discontinuation of paliperidone in individuals with schizophrenia or schizoaffective disorder: an individual participant data analysis
06
Fast, L., Temuulen, U., Villringer, K., Kufner, A., Ali, H.F., Siebert, E., Huo, S et al
Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke
07
Rane, R. P., Musial, M. P. M., Beck, A., Rapp, M., Schlagenhauf, F., Banaschewski, T., ... & IMAGEN consortium