In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.
      
          01
        
    
    
      
      
          Schulz, M. A., Siegel, N. T., & Ritter, K.
        
      
  Brain-age models with lower age prediction accuracy have higher sensitivity for disease detection
      
          02
        
    
    
      
      
          Gijsen, S., & Ritter, K.
        
      
  EEG-Language Modeling for Pathology Detection
      
          03
        
    
    
      
      
          Reinhardt, P., Zacharias, N., Fislage, M., Böhmer, J., Hollunder, B., Reppmann, Z., ... & Winterer, G.
        
      
  Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex
      
          04
        
    
    
      
      
          Siegel, N. T., Kainmueller, D., Deniz, F., Ritter, K., & Schulz, M. A.
        
      
  Do Transformers and CNNs Learn Different Concepts of Brain Age?
      
          05
        
    
    
      
      
          Gijsen, S., & Ritter, K
        
      
  Self-supervised Learning for Encoding Between-Subject Information in Clinical EEG
      
          06
        
    
    
      
      
          Langhammer T, Unterfeld C, Blankenburg F, ..., Ritter K, et al
        
      
  Design and methods of the research unit 5187 PREACT (towards precision psychotherapy for non-respondent patients: from signatures to predictions to clinical utility) – a study protocol for a multicentre observational study in outpatient clinics
      
          07
        
    
    
      
      
          Seiler, M., Ritter, K.
        
      
  Pioneering new paths: the role of generative modelling in neurological disease research
      
          08
        
    
    
      
      
          Rane, R.P., Kim, J., Umesha, A., Stark, D., Schulz, MA., Ritter, K. 
        
      
  DeepRepViz: Identifying Potential Confounders in Deep Learning Model Predictions
      
          09
        
    
    
      
      
          Hilbert, K., Weller, P., Ritter, K., Haynes, J.D., Walter, H., Lueken, U. 
        
      
  Design studies for clinical prediction
      
          10
        
    
    
      
      
          Spanagel R., Bach P., Banaschewski T., et al. 
        
      
  The ReCoDe addiction research consortium: Losing and regaining control over drug intake—Findings and future perspectives
      
          11
        
    
    
      
      
          Noteboom, S., Seiler, M., Chien, C., Rane, R. P., Barkhof, F., Strijbis, E.M.M,...& Ritter, K.
        
      
  Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis
      
          12
        
    
    
      
      
          Schulz, M.A., Albrecht, J.P., Yilmaz, A., Koch, A., Kainmüller, D., Leser, U. & Ritter, K.