In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.
      
          01
        
    
    
      
      
          Eitel, F., Albrecht, J. P., Weygandt, M., Paul, F., & Ritter, K.
        
      
  Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
      
          02
        
    
    
      
      
          Schulz, M. A., Baier, S., Timmermann, B., Bzdok, D., & Witt, K.
        
      
  A cognitive fingerprint in human random number generation
      
          03
        
    
    
      
      
          Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative
        
      
  MRI Image Registration Considerably Improves CNN-Based Disease Classification
      
          04
        
    
    
      
      
          Chapman-Rounds, M., Bhatt, U., Pazos, E., Schulz, M. A., & Georgatzis, K. 
        
      
  FIMAP: Feature Importance by Minimal Adversarial Perturbation
      
          05
        
    
    
      
      
          Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.
        
      
  Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research
      
          06
        
    
    
      
      
          Ritter, M., Ott, D. V., Paul, F., Haynes, J. D., & Ritter, K.