In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.

01
Eitel, F., Albrecht, J. P., Weygandt, M., Paul, F., & Ritter, K.

Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data

Dec 27, 2021 | scientific reports
02
Schulz, M. A., Baier, S., Timmermann, B., Bzdok, D., & Witt, K.

A cognitive fingerprint in human random number generation

Oct 12, 2021 | Scientific reports
03
Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative

MRI Image Registration Considerably Improves CNN-Based Disease Classification

Sep 21, 2021 | Machine Learning in Clinical Neuroimaging 2021
04
Chapman-Rounds, M., Bhatt, U., Pazos, E., Schulz, M. A., & Georgatzis, K.

FIMAP: Feature Importance by Minimal Adversarial Perturbation

May 18, 2021 | AAAI Conference on Artificial Intelligence
05
Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.

Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research

May 01, 2021 | Experimental Neurology
06
Ritter, M., Ott, D. V., Paul, F., Haynes, J. D., & Ritter, K.

COVID-19: a simple statistical model for predicting intensive care unit load in exponential phases of the disease

Mar 03, 2021 | Scientific Reports