In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.

01
Wakonig, K., Eitel, F., Ritter, K., Hetzer, S., Schmitz-Hübsch, T., Bellmann-Strobl, J., ... & Weygandt, M.

Altered coupling of psychological relaxation and regional volume of brain reward areas in multiple sclerosis

Oct 06, 2020 | Frontiers in Neurology
02
Schulz, M. A., Yeo, B. T., Vogelstein, J. T., Mourao-Miranada, J., Kather, J. N., Kording, K., ... & Bzdok, D.

Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets

Aug 25, 2020 | Nature communications
03
Schulz, M. A., Chapman-Rounds, M., Verma, M., Bzdok, D., & Georgatzis, K.

Inferring disease subtypes from clusters in explanation space

Jul 30, 2020 | Scientific Reports
04
Stark, D., & Ritter, K.

AIM and Gender Aspects

Jan 01, 2020 | Artificial Intelligence in Medicine