In the Department of Data Science we generate knowledge from data to advance neuroscience and ophthalmology.

01
Franke, K., Cai, C., Ponder, K., Fu, J., Sokoloski, S., Berens, P., & Tolias, A. S.

Asymmetric distribution of color-opponent response types across mouse visual cortex supports superior color vision in the sky.

Sep 05, 2024 | Elife, 12, RP89996
02
Beck, J., Bosch, N., Deistler, M., Kadhim, K.L., Macke, J. H., Hennig, P., Berens, P.

Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations

Jun 25, 2024 | International Conference on Machine Learning 2024
03
Zouridis, I. S., Schmors, L., Fischer, K. M., Berens, P., Preston-Ferrer, P., & Burgalossi, A.

Juxtacellular recordings from identified neurons in the mouse locus coeruleus

Jun 13, 2024 | European Journal of Neuroscience
04
Köhler, P., Fadugba, J., Berens, P., Koch, L.M.

Efficiently correcting patch-based segmentation errors to control image-level performance in retinal images

Jun 06, 2024 | Medical Imaging with Deep Learning 2024
05
Wundram, A.M., Fischer, P., Wunderlich, S., Faber, H., Koch, L.M., Berens, P., Baumgartner C. F.

Leveraging Probabilistic Segmentation Models for Improved Glaucoma Diagnosis: A Clinical Pipeline Approach

Jun 06, 2024 | Medical Imaging with Deep Learning 2024
06
Yaïci, R., Cieplucha, M., Bock, R. et al

ChatGPT und die deutsche Facharztprüfung für Augenheilkunde: eine Evaluierung

May 27, 2024 | Die Ophthalmologie
07
08
Ayhan, M. S., Neubauer, J., Uzel, M. M., Gelisken, F., & Berens, P.

Interpretable detection of epiretinal membrane from optical coherence tomography with deep neural networks.

Apr 11, 2024 | Scientific Reports, 14(1), 8484.
09
González-Márquez, R., Schmidt, L., Schmidt, B. M., Berens, P., & Kobak, D.

The landscape of biomedical research

Apr 09, 2024 | Patterns, 100968
10
Grote, T., Berens, P.

A paradigm shift?—On the ethics of medical large language models

Mar 25, 2024 | Bioethics
11
Sun, S., Koch, L. M., & Baumgartner, C. F.

Right for the Wrong Reason: Can Interpretable ML Techniques Detect Spurious Correlations?

Oct 01, 2023 | In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 425-434). Cham: Springer Nature Switzerland.
12
Nazari, P., Damrich, S., Hamprecht, F.A.

Geometric Autoencoders – What You See is What You Decode

Jul 23, 2023 | International Conference on Machine Learning 2023
13
Ayhan, M. S., Faber, H., Kühlewein, L., Inhoffen, W., Aliyeva, G., Ziemssen, F., & Berens, P.

Multitask Learning for Activity Detection in Neovascular Age-Related Macular Degeneration

Jul 21, 2023 | Translational Vision Science & Technology, 12(4), 12-12
14
Djoumessi, K. R. D., Ilanchezian, I., Kühlewein, L., Faber, H., Baumgartner, C. F., Bah, B., Berens, P. & Koch, L. M.

Sparse Activations for Interpretable Disease Grading

Jul 20, 2023 | Proceedings of Medical Imaging with Deep Learning (MIDL)
15
Sun, S., Woerner, S., Maier, A., Koch, L.M., Baumgartner,, C.F.

Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals

Jul 20, 2023 | Medical Imaging with Deep Learning 2023
16
Grote, T., & Berens, P

Uncertainty, evidence, and the integration of machine learning into medical practice

Jul 19, 2023 | The Journal of Medicine and Philosophy: A Forum for Bioethics and Philosophy of Medicine (Vol. 48, No. 1, pp. 84-97). US: Oxford University Press