In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.
01
Rane, R. P., Heinz, A., & Ritter, K
AIM in Alcohol and Drug Dependence
02
Brasanac, J., Ramien, C., Gamradt, S., Taenzer, A., Glau, L., Ritter, K. et al
Immune signature of multiple sclerosis-associated depression
03
Kübler, D., Wellmann, S. K., Kaminski, J., Skowronek, C., Schneider, G. H., Neumann, W. J., ... & Kühn, A.
Nucleus basalis of Meynert predicts cognition after deep brain stimulation in Parkinson's disease
04
Eitel, F., Albrecht, J. P., Weygandt, M., Paul, F., & Ritter, K.
Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
05
Schulz, M. A., Baier, S., Timmermann, B., Bzdok, D., & Witt, K.
A cognitive fingerprint in human random number generation
06
Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative
MRI Image Registration Considerably Improves CNN-Based Disease Classification
07
Chapman-Rounds, M., Bhatt, U., Pazos, E., Schulz, M. A., & Georgatzis, K.
FIMAP: Feature Importance by Minimal Adversarial Perturbation
08
Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.
Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research
09
Ritter, M., Ott, D. V., Paul, F., Haynes, J. D., & Ritter, K.
COVID-19: a simple statistical model for predicting intensive care unit load in exponential phases of the disease
10
Wakonig, K., Eitel, F., Ritter, K., Hetzer, S., Schmitz-Hübsch, T., Bellmann-Strobl, J., ... & Weygandt, M.
Altered coupling of psychological relaxation and regional volume of brain reward areas in multiple sclerosis
11
Schulz, M. A., Yeo, B. T., Vogelstein, J. T., Mourao-Miranada, J., Kather, J. N., Kording, K., ... & Bzdok, D.
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
12
Schulz, M. A., Chapman-Rounds, M., Verma, M., Bzdok, D., & Georgatzis, K.
Inferring disease subtypes from clusters in explanation space
13
Stark, D., & Ritter, K.
AIM and Gender Aspects
14
Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification
15
Srivastava, S., Eitel, F., & Ritter, K.
Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach
16
Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., ... & Ritter, K.