In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.
01
Noteboom, S., Seiler, M., Chien, C., Rane, R. P., Barkhof, F., Strijbis, E.M.M,...& Ritter, K.
Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis
02
Schulz, M.A., Albrecht, J.P., Yilmaz, A., Koch, A., Kainmüller, D., Leser, U. & Ritter, K.
TLIMB-a transfer learning framework for image analysis of the brain
03
Mitrovska, A., Safari, P., Ritter, K., Shariati, B., Fischer, J. K.
Secure federated learning for Alzheimer's disease detection
04
Oliveira, M., Wilming, R., Clark, B., Budding, C., Eitel, F., Ritter, K., Haufe, S.
Benchmarking the influence of pre-training on explanation performance in MR image classification
05
Schulz, M.A., Bzdok, D., Haufe, S., Haynes, J.D., Ritter, K.
Performance reserves in brain-imaging-based phenotype prediction
06
Schulz, M.A., Hetzer, S., Eitel, F., Asseyer, S., Meyer-Arndt, L., Schmitz-Hübsch, T., et al
Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis
07
Vorisek, C., Stellmach, C., Mayer, P., Klopfenstein, S., Bures, D., Diehl, A., Henningsen, M., Ritter, K., Thun, S.
Artificial Intelligence Bias in Health Care: Web-Based Survey
08
Klingenberg, M., Stark, D., Eitel, F. et al
Higher performance for women than men in MRI-based Alzheimer’s disease detection
09
Wang, D., Honnorat, N., Fox, P. T., Ritter, K., Eickhoff, S. B., Seshadri, S., ... & Alzheimer’s Disease Neuroimaging Initiative
Deep neural network heatmaps capture Alzheimer’s disease patterns reported in a large meta-analysis of neuroimaging studies
10
Brandt, L., Ritter, K., Schneider-Thoma, J., Siafis, S., Montag, C., Ayrilmaz, H. et al
Predicting psychotic relapse following randomised discontinuation of paliperidone in individuals with schizophrenia or schizoaffective disorder: an individual participant data analysis
11
Fast, L., Temuulen, U., Villringer, K., Kufner, A., Ali, H.F., Siebert, E., Huo, S et al
Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke
12
Rane, R. P., Musial, M. P. M., Beck, A., Rapp, M., Schlagenhauf, F., Banaschewski, T., ... & IMAGEN consortium
Uncontrolled eating and sensation-seeking partially explain the prediction of future binge drinking from adolescent brain structure
13
Schulz, M. A., Koch, A., Guarino, V. E., Kainmueller, D., & Ritter, K
Data augmentation via partial nonlinear registration for brain-age prediction
14
Chien, C., Seiler, M., Eitel, F., Schmitz-Hübsch, T., Paul, F., & Ritter, K.
Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity
15
Rane, R. P., de Man, E. F., Kim, J., Görgen, K., Tschorn, M., Rapp, M. A., ... & IMAGEN consortium.
Structural differences in adolescent brains can predict alcohol misuse
16
Subramaniam, P., Kossen, T., Ritter, K., Hennemuth, A., Hildebrand, K., Hilbert, A., ... & Madai, V. I.