In the Department of Machine Learning, we develop models to improve decision making in clinical brain research.

01
Serin, E., Ritter, K., Schumann, G., Banaschewski, T., Marquand, A., & Walter, H

Generating synthetic task-based brain fingerprints for population neuroscience using deep learning

Nov 14, 2025 | Communications Biology
02
Schulz, M. A., Siegel, N. T., & Ritter, K.

Brain-age models with lower age prediction accuracy have higher sensitivity for disease detection

Oct 28, 2025 | PLOS Biology, 23(10)
03
Gijsen, S., & Ritter, K.

EEG-Language Modeling for Pathology Detection

Aug 11, 2025 | ICML 2025
04
Reinhardt, P., Zacharias, N., Fislage, M., Böhmer, J., Hollunder, B., Reppmann, Z., ... & Winterer, G.

Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex

Aug 01, 2025 | Addiction Biology
05
Siegel, N. T., Kainmueller, D., Deniz, F., Ritter, K., & Schulz, M. A.

Do Transformers and CNNs Learn Different Concepts of Brain Age?

Jun 09, 2025 | Human Brain Mapping
08
Seiler, M., Ritter, K.

Pioneering new paths: the role of generative modelling in neurological disease research

Oct 08, 2024 | Pflugers Arch - Eur J Physiol
09
Rane, R.P., Kim, J., Umesha, A., Stark, D., Schulz, MA., Ritter, K.

DeepRepViz: Identifying Potential Confounders in Deep Learning Model Predictions

Oct 03, 2024 | MICCAI 2024
10
Hilbert, K., Weller, P., Ritter, K., Haynes, J.D., Walter, H., Lueken, U.

Design studies for clinical prediction

Aug 08, 2024 | Science