Data Science / Machine Learning for Safe Medical Diagnostics

We work on robust and interpretable algorithms that enable machine learning algorithms to be applied in the clinical workflow in ophthalmology.

02
Grote, T., Freiesleben, T. & Berens, P.

Foundation models in healthcare require rethinking reliability

Nov 11, 2024 | Nature Machine Intelligence
03
Wundram, A.M., Fischer, P., Wunderlich, S., Faber, H., Koch, L.M., Berens, P., Baumgartner C. F.

Leveraging Probabilistic Segmentation Models for Improved Glaucoma Diagnosis: A Clinical Pipeline Approach

Jun 06, 2024 | Medical Imaging with Deep Learning 2024
04
Köhler, P., Fadugba, J., Berens, P., Koch, L.M.

Efficiently correcting patch-based segmentation errors to control image-level performance in retinal images

Jun 06, 2024 | Medical Imaging with Deep Learning 2024
05
06
Ayhan, M. S., Neubauer, J., Uzel, M. M., Gelisken, F., & Berens, P.

Interpretable detection of epiretinal membrane from optical coherence tomography with deep neural networks.

Apr 11, 2024 | Scientific Reports, 14(1), 8484.
07
Sun, S., Koch, L. M., & Baumgartner, C. F.

Right for the Wrong Reason: Can Interpretable ML Techniques Detect Spurious Correlations?

Oct 01, 2023 | In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 425-434). Cham: Springer Nature Switzerland.
08
Ayhan, M. S., Faber, H., Kühlewein, L., Inhoffen, W., Aliyeva, G., Ziemssen, F., & Berens, P.

Multitask Learning for Activity Detection in Neovascular Age-Related Macular Degeneration

Jul 21, 2023 | Translational Vision Science & Technology, 12(4), 12-12
09
Djoumessi, K. R. D., Ilanchezian, I., Kühlewein, L., Faber, H., Baumgartner, C. F., Bah, B., Berens, P. & Koch, L. M.

Sparse Activations for Interpretable Disease Grading

Jul 20, 2023 | Proceedings of Medical Imaging with Deep Learning (MIDL)
10
Sun, S., Woerner, S., Maier, A., Koch, L.M., Baumgartner,, C.F.

Inherently Interpretable Multi-Label Classification Using Class-Specific Counterfactuals

Jul 20, 2023 | Medical Imaging with Deep Learning 2023
11
Boreiko, V., Augustin, M., Croce, F., Berens, P., & Hein, M.

Sparse visual counterfactual explanations in image space

Sep 09, 2022 | DAGM German Conference on Pattern Recognition (pp. 133-148)
12
Müller, S., Koch, L. M., Lensch, H., & Berens, P.

A Generative Model Reveals the Influence of Patient Attributes on Fundus Images

May 09, 2022 | In Medical Imaging with Deep Learning.
13
Koch, L. M., Schürch, C. M., Gretton, A., & Berens, P.

Hidden in plain sight: Subgroup shifts escape ood detection

Feb 28, 2022 | Proceedings of Medical Imaging with Deep Learning (MIDL)
14
Blum, C., Baur, D., Achauer, L. C., Berens, P., [...], Huang, Z., [...] , Macke, J.H., [...] & Ziemann, U.

Personalized neurorehabilitative precision medicine: from data to therapies (MWKNeuroReha)–a multi-centre prospective observational clinical trial to predict long-term outcome of patients with acute motor stroke

Feb 14, 2022 | BMC Neurology, 22(1), 1-15
15
Boreiko, V., Ilanchezian, I., Ayhan, M. S., Müller, S., Koch, L. M., Faber, H., Berens, P. & Hein, M.

Visual explanations for the detection of diabetic retinopathy from retinal fundus images

Feb 02, 2022 | International conference on medical image computing and computer-assisted intervention (MICCAI) (pp. 539-549), Cham: Springer Nature Switzerland
16
Faber, H., Berens, P., & Rohrbach, J. M.

Ocular changes as a diagnostic tool for malaria

Jan 02, 2022 | Der Ophthalmologe, 1-6
17
Ayhan, M. S., Kümmerle, L. B., Kühlewein, L., Inhoffen, W., Aliyeva, G., Ziemssen, F., & Berens, P.

Clinical validation of saliency maps for understanding deep neural networks in ophthalmology

Jan 01, 2022 | Medical Image Analysis, 77, 102364
18
Pfau, M., Walther, G., von der Emde, L., Berens, P., Faes, L., Fleckenstein, M., ... & Holz, F. G.

Artificial intelligence in ophthalmology: Guidelines for physicians for the critical evaluation of studies.

Aug 28, 2020 | Der Ophthalmologe, 117, 973-988.
19
Ayhan, M. S., Kühlewein, L., Aliyeva, G., Inhoffen, W., Ziemssen, F., & Berens, P.

Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection.

Aug 20, 2020 | Medical image analysis, 64, 101724.
20
Berens, P., Waldstein, S. M., Ayhan, M. S., Kuemmerle, L., Agostini, H., Stahl, A., & Ziemssen, F.

Potential of methods of artificial intelligence for quality assurance.

Feb 24, 2020 | Der Ophthalmologe, 117, 320-325.
21
Grote, T., & Berens, P.

On the ethics of algorithmic decision-making in healthcare.

Feb 20, 2020 | Journal of medical ethics, 46(3), 205-211.
22
Berens, P., & Ayhan, M. S.

Proprietary data formats block health research.

Jan 31, 2019 | Nature, 565(7737), 429-430.