Prof. Dr. Kerstin Ritter

Kerstin Ritter
Prof. Dr. Kerstin Ritter is a Full Professor of Machine Learning for Clinical Neuroscience at the University of Tübingen and is a Director at the Hertie Institute for AI in Brain Health. She is PI in the Excellence Cluster “Machine Learning – New Perspectives for Science” and the Tübingen AI Center as well as multiple interdisciplinary research consortia focusing on innovative methods at the intersection of machine learning, statistics and medical applications in neurology and psychiatry. Her research focuses on using advanced AI methods to assess brain health through diverse data types, including neuroimaging, clinical, genetic, and behavioral data. Her contributions to the field have been recognized with awards such as the NARSAD Young Investigator Grant and the Deutsche Multiple Sklerose Gesellschaft Research Prize.
Using AI to assess brain health bridges the gap between rapid technology advances and the need for precise care in neurology and psychiatry.
01
Seiler, M., Ritter, K.

Pioneering new paths: the role of generative modelling in neurological disease research

Oct 08, 2024 | Pflugers Arch - Eur J Physiol
02
Hilbert, K., Weller, P., Ritter, K., Haynes, J.D., Walter, H., Lueken, U.

Design studies for clinical prediction

Aug 08, 2024 | Science
04
Noteboom, S., Seiler, M., Chien, C., Rane, R. P., Barkhof, F., Strijbis, E.M.M,...& Ritter, K.

Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis

Jun 23, 2024 | Journal of Neurology
05
Schulz, M.A., Albrecht, J.P., Yilmaz, A., Koch, A., Kainmüller, D., Leser, U. & Ritter, K.

TLIMB-a transfer learning framework for image analysis of the brain

Mar 25, 2024 | CEUR Workshop Proceedings
06
Mitrovska, A., Safari, P., Ritter, K., Shariati, B., Fischer, J. K.

Secure federated learning for Alzheimer's disease detection

Mar 07, 2024 | Frontiers in Aging Neuroscience
07
Oliveira, M., Wilming, R., Clark, B., Budding, C., Eitel, F., Ritter, K., Haufe, S.

Benchmarking the influence of pre-training on explanation performance in MR image classification

Feb 24, 2024 | Frontiers in Artificial Intelligence
08
Schulz, M.A., Bzdok, D., Haufe, S., Haynes, J.D., Ritter, K.

Performance reserves in brain-imaging-based phenotype prediction

Jan 23, 2024 | Cell Reports
09
Schulz, M.A., Hetzer, S., Eitel, F., Asseyer, S., Meyer-Arndt, L., Schmitz-Hübsch, T., et al

Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis

Sep 15, 2023 | Iscience
10
Vorisek, C., Stellmach, C., Mayer, P., Klopfenstein, S., Bures, D., Diehl, A., Henningsen, M., Ritter, K., Thun, S.

Artificial Intelligence Bias in Health Care: Web-Based Survey

Jun 22, 2023 | Journal of Medical Internet Research
11
Klingenberg, M., Stark, D., Eitel, F. et al

Higher performance for women than men in MRI-based Alzheimer’s disease detection

Apr 20, 2023 | Alzheimer's Research & Therapy
12
Wang, D., Honnorat, N., Fox, P. T., Ritter, K., Eickhoff, S. B., Seshadri, S., ... & Alzheimer’s Disease Neuroimaging Initiative

Deep neural network heatmaps capture Alzheimer’s disease patterns reported in a large meta-analysis of neuroimaging studies

Apr 01, 2023 | NeuroImage
13
Brandt, L., Ritter, K., Schneider-Thoma, J., Siafis, S., Montag, C., Ayrilmaz, H. et al

Predicting psychotic relapse following randomised discontinuation of paliperidone in individuals with schizophrenia or schizoaffective disorder: an individual participant data analysis

Mar 01, 2023 | The Lancet Psychiatry
14
Fast, L., Temuulen, U., Villringer, K., Kufner, A., Ali, H.F., Siebert, E., Huo, S et al

Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke

Feb 21, 2023 | Frontiers in neurology
15
Rane, R. P., Musial, M. P. M., Beck, A., Rapp, M., Schlagenhauf, F., Banaschewski, T., ... & IMAGEN consortium

Uncontrolled eating and sensation-seeking partially explain the prediction of future binge drinking from adolescent brain structure

Jan 01, 2023 | NeuroImage: Clinical
16
Schulz, M. A., Koch, A., Guarino, V. E., Kainmueller, D., & Ritter, K

Data augmentation via partial nonlinear registration for brain-age prediction

Oct 06, 2022 | International Workshop on Machine Learning in Clinical Neuroimaging
17
Chien, C., Seiler, M., Eitel, F., Schmitz-Hübsch, T., Paul, F., & Ritter, K.

Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity

Jul 03, 2022 | Multiple Sclerosis Journal–Experimental, Translational and Clinical
18
Rane, R. P., de Man, E. F., Kim, J., Görgen, K., Tschorn, M., Rapp, M. A., ... & IMAGEN consortium.

Structural differences in adolescent brains can predict alcohol misuse

May 26, 2022 | Elife
19
Subramaniam, P., Kossen, T., Ritter, K., Hennemuth, A., Hildebrand, K., Hilbert, A., ... & Madai, V. I.

Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks

May 01, 2022 | Medical image analysis
20
Rane, R. P., Heinz, A., & Ritter, K

AIM in Alcohol and Drug Dependence

Feb 18, 2022 | Artificial Intelligence in Medicine
21
Brasanac, J., Ramien, C., Gamradt, S., Taenzer, A., Glau, L., Ritter, K. et al

Immune signature of multiple sclerosis-associated depression

Feb 01, 2022 | Brain, Behavior, and Immunity
22
Kübler, D., Wellmann, S. K., Kaminski, J., Skowronek, C., Schneider, G. H., Neumann, W. J., ... & Kühn, A.

Nucleus basalis of Meynert predicts cognition after deep brain stimulation in Parkinson's disease

Jan 01, 2022 | Parkinsonism & Related Disorders
23
Eitel, F., Albrecht, J. P., Weygandt, M., Paul, F., & Ritter, K.

Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data

Dec 27, 2021 | scientific reports
24
Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative

MRI Image Registration Considerably Improves CNN-Based Disease Classification

Sep 21, 2021 | Machine Learning in Clinical Neuroimaging 2021
25
Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.

Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research

May 01, 2021 | Experimental Neurology
26
Ritter, M., Ott, D. V., Paul, F., Haynes, J. D., & Ritter, K.

COVID-19: a simple statistical model for predicting intensive care unit load in exponential phases of the disease

Mar 03, 2021 | Scientific Reports
27
Wakonig, K., Eitel, F., Ritter, K., Hetzer, S., Schmitz-Hübsch, T., Bellmann-Strobl, J., ... & Weygandt, M.

Altered coupling of psychological relaxation and regional volume of brain reward areas in multiple sclerosis

Oct 06, 2020 | Frontiers in Neurology
28
Stark, D., & Ritter, K.

AIM and Gender Aspects

Jan 01, 2020 | Artificial Intelligence in Medicine
29
Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification

Oct 24, 2019 | MICCAI 2019
30
Srivastava, S., Eitel, F., & Ritter, K.

Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach

Oct 10, 2019 | Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction
31
Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., ... & Ritter, K.

Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

Sep 06, 2019
32
Weygandt, M., Behrens, J., Brasanac, J., Söder, E., Meyer-Arndt, L., Wakonig, K., ... & Paul, F.

Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis

Aug 01, 2019 | Multiple sclerosis and related disorders
33
Böhle, M., Eitel, F., Weygandt, M., & Ritter, K.

Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer's disease classification

Jul 31, 2019 | Frontiers in aging neuroscience