
Using AI to assess brain health bridges the gap between rapid technology advances and the need for precise care in neurology and psychiatry.
Prof. Dr. Kerstin Ritter

Prof. Dr. Kerstin Ritter is a Full Professor of Machine Learning for Clinical Neuroscience at the University of Tübingen and is a Director at the Hertie Institute for AI in Brain Health. She is PI in the Excellence Cluster “Machine Learning – New Perspectives for Science” and the Tübingen AI Center as well as multiple interdisciplinary research consortia focusing on innovative methods at the intersection of machine learning, statistics and medical applications in neurology and psychiatry. Her research focuses on using advanced AI methods to assess brain health through diverse data types, including neuroimaging, clinical, genetic, and behavioral data. Her contributions to the field have been recognized with awards such as the NARSAD Young Investigator Grant and the Deutsche Multiple Sklerose Gesellschaft Research Prize.
Using AI to assess brain health bridges the gap between rapid technology advances and the need for precise care in neurology and psychiatry.
01
Gijsen, S., & Ritter, K.
EEG-Language Modeling for Pathology Detection
02
Reinhardt, P., Zacharias, N., Fislage, M., Böhmer, J., Hollunder, B., Reppmann, Z., ... & Winterer, G.
Machine Learning Classification of Smoking Behaviours-From Social Environment to the Prefrontal Cortex
03
Siegel, N. T., Kainmueller, D., Deniz, F., Ritter, K., & Schulz, M. A.
Do Transformers and CNNs Learn Different Concepts of Brain Age?
04
Gijsen, S., & Ritter, K
Self-supervised Learning for Encoding Between-Subject Information in Clinical EEG
05
Langhammer T, Unterfeld C, Blankenburg F, ..., Ritter K, et al
Design and methods of the research unit 5187 PREACT (towards precision psychotherapy for non-respondent patients: from signatures to predictions to clinical utility) – a study protocol for a multicentre observational study in outpatient clinics
06
Seiler, M., Ritter, K.
Pioneering new paths: the role of generative modelling in neurological disease research
07
Rane, R.P., Kim, J., Umesha, A., Stark, D., Schulz, MA., Ritter, K.
DeepRepViz: Identifying Potential Confounders in Deep Learning Model Predictions
08
Hilbert, K., Weller, P., Ritter, K., Haynes, J.D., Walter, H., Lueken, U.
Design studies for clinical prediction
09
Spanagel R., Bach P., Banaschewski T., et al.
The ReCoDe addiction research consortium: Losing and regaining control over drug intake—Findings and future perspectives
10
Noteboom, S., Seiler, M., Chien, C., Rane, R. P., Barkhof, F., Strijbis, E.M.M,...& Ritter, K.
Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis
11
Schulz, M.A., Albrecht, J.P., Yilmaz, A., Koch, A., Kainmüller, D., Leser, U. & Ritter, K.
TLIMB-a transfer learning framework for image analysis of the brain
12
Mitrovska, A., Safari, P., Ritter, K., Shariati, B., Fischer, J. K.
Secure federated learning for Alzheimer's disease detection
13
Oliveira, M., Wilming, R., Clark, B., Budding, C., Eitel, F., Ritter, K., Haufe, S.
Benchmarking the influence of pre-training on explanation performance in MR image classification
14
Schulz, M.A., Bzdok, D., Haufe, S., Haynes, J.D., Ritter, K.
Performance reserves in brain-imaging-based phenotype prediction
15
Schulz, M.A., Hetzer, S., Eitel, F., Asseyer, S., Meyer-Arndt, L., Schmitz-Hübsch, T., et al
Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis
16
Vorisek, C., Stellmach, C., Mayer, P., Klopfenstein, S., Bures, D., Diehl, A., Henningsen, M., Ritter, K., Thun, S.
Artificial Intelligence Bias in Health Care: Web-Based Survey
17
Klingenberg, M., Stark, D., Eitel, F. et al
Higher performance for women than men in MRI-based Alzheimer’s disease detection
18
Wang, D., Honnorat, N., Fox, P. T., Ritter, K., Eickhoff, S. B., Seshadri, S., ... & Alzheimer’s Disease Neuroimaging Initiative
Deep neural network heatmaps capture Alzheimer’s disease patterns reported in a large meta-analysis of neuroimaging studies
19
Brandt, L., Ritter, K., Schneider-Thoma, J., Siafis, S., Montag, C., Ayrilmaz, H. et al
Predicting psychotic relapse following randomised discontinuation of paliperidone in individuals with schizophrenia or schizoaffective disorder: an individual participant data analysis
20
Fast, L., Temuulen, U., Villringer, K., Kufner, A., Ali, H.F., Siebert, E., Huo, S et al
Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke
21
Rane, R. P., Musial, M. P. M., Beck, A., Rapp, M., Schlagenhauf, F., Banaschewski, T., ... & IMAGEN consortium
Uncontrolled eating and sensation-seeking partially explain the prediction of future binge drinking from adolescent brain structure
22
Schulz, M. A., Koch, A., Guarino, V. E., Kainmueller, D., & Ritter, K
Data augmentation via partial nonlinear registration for brain-age prediction
23
Chien, C., Seiler, M., Eitel, F., Schmitz-Hübsch, T., Paul, F., & Ritter, K.
Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity
24
Rane, R. P., de Man, E. F., Kim, J., Görgen, K., Tschorn, M., Rapp, M. A., ... & IMAGEN consortium.
Structural differences in adolescent brains can predict alcohol misuse
25
Subramaniam, P., Kossen, T., Ritter, K., Hennemuth, A., Hildebrand, K., Hilbert, A., ... & Madai, V. I.
Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks
26
Rane, R. P., Heinz, A., & Ritter, K
AIM in Alcohol and Drug Dependence
27
Brasanac, J., Ramien, C., Gamradt, S., Taenzer, A., Glau, L., Ritter, K. et al
Immune signature of multiple sclerosis-associated depression
28
Kübler, D., Wellmann, S. K., Kaminski, J., Skowronek, C., Schneider, G. H., Neumann, W. J., ... & Kühn, A.
Nucleus basalis of Meynert predicts cognition after deep brain stimulation in Parkinson's disease
29
Eitel, F., Albrecht, J. P., Weygandt, M., Paul, F., & Ritter, K.
Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
30
Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative
MRI Image Registration Considerably Improves CNN-Based Disease Classification
31
Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.
Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research
32
Ritter, M., Ott, D. V., Paul, F., Haynes, J. D., & Ritter, K.
COVID-19: a simple statistical model for predicting intensive care unit load in exponential phases of the disease
33
Wakonig, K., Eitel, F., Ritter, K., Hetzer, S., Schmitz-Hübsch, T., Bellmann-Strobl, J., ... & Weygandt, M.
Altered coupling of psychological relaxation and regional volume of brain reward areas in multiple sclerosis
34
Stark, D., & Ritter, K.
AIM and Gender Aspects
35
Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification
36
Srivastava, S., Eitel, F., & Ritter, K.
Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach
37
Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., ... & Ritter, K.
Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
38
Weygandt, M., Behrens, J., Brasanac, J., Söder, E., Meyer-Arndt, L., Wakonig, K., ... & Paul, F.
Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis
39
Böhle, M., Eitel, F., Weygandt, M., & Ritter, K.
Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer's disease classification
40
Hornstein, S., Seiler, M., Hoffman, V., Nelson, B., Aschbacher, K., Ritter, K., & Hilbert, K.