Machine Learning / Precision Brain Science

We analyze neuroimaging, clinical, psychometric, smartphone, and neurobiological data within a clinical framework to derive meaningful insights and improve patient outcomes in neurology and psychiatry.

01
Seiler, M., Ritter, K.

Pioneering new paths: the role of generative modelling in neurological disease research

Oct 08, 2024 | Pflugers Arch - Eur J Physiol
02
Hilbert, K., Weller, P., Ritter, K., Haynes, J.D., Walter, H., Lueken, U.

Design studies for clinical prediction

Aug 08, 2024 | Science
04
Noteboom, S., Seiler, M., Chien, C., Rane, R. P., Barkhof, F., Strijbis, E.M.M,...& Ritter, K.

Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis

Jun 23, 2024 | Journal of Neurology
05
Schulz, M.A., Albrecht, J.P., Yilmaz, A., Koch, A., Kainmüller, D., Leser, U. & Ritter, K.

TLIMB-a transfer learning framework for image analysis of the brain

Mar 25, 2024 | CEUR Workshop Proceedings
06
Mitrovska, A., Safari, P., Ritter, K., Shariati, B., Fischer, J. K.

Secure federated learning for Alzheimer's disease detection

Mar 07, 2024 | Frontiers in Aging Neuroscience
07
Oliveira, M., Wilming, R., Clark, B., Budding, C., Eitel, F., Ritter, K., Haufe, S.

Benchmarking the influence of pre-training on explanation performance in MR image classification

Feb 24, 2024 | Frontiers in Artificial Intelligence
08
Schulz, M.A., Bzdok, D., Haufe, S., Haynes, J.D., Ritter, K.

Performance reserves in brain-imaging-based phenotype prediction

Jan 23, 2024 | Cell Reports
09
Schulz, M.A., Hetzer, S., Eitel, F., Asseyer, S., Meyer-Arndt, L., Schmitz-Hübsch, T., et al

Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis

Sep 15, 2023 | Iscience
10
Vorisek, C., Stellmach, C., Mayer, P., Klopfenstein, S., Bures, D., Diehl, A., Henningsen, M., Ritter, K., Thun, S.

Artificial Intelligence Bias in Health Care: Web-Based Survey

Jun 22, 2023 | Journal of Medical Internet Research
11
Klingenberg, M., Stark, D., Eitel, F. et al

Higher performance for women than men in MRI-based Alzheimer’s disease detection

Apr 20, 2023 | Alzheimer's Research & Therapy
12
Wang, D., Honnorat, N., Fox, P. T., Ritter, K., Eickhoff, S. B., Seshadri, S., ... & Alzheimer’s Disease Neuroimaging Initiative

Deep neural network heatmaps capture Alzheimer’s disease patterns reported in a large meta-analysis of neuroimaging studies

Apr 01, 2023 | NeuroImage
13
Brandt, L., Ritter, K., Schneider-Thoma, J., Siafis, S., Montag, C., Ayrilmaz, H. et al

Predicting psychotic relapse following randomised discontinuation of paliperidone in individuals with schizophrenia or schizoaffective disorder: an individual participant data analysis

Mar 01, 2023 | The Lancet Psychiatry
14
Fast, L., Temuulen, U., Villringer, K., Kufner, A., Ali, H.F., Siebert, E., Huo, S et al

Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke

Feb 21, 2023 | Frontiers in neurology
15
Rane, R. P., Musial, M. P. M., Beck, A., Rapp, M., Schlagenhauf, F., Banaschewski, T., ... & IMAGEN consortium

Uncontrolled eating and sensation-seeking partially explain the prediction of future binge drinking from adolescent brain structure

Jan 01, 2023 | NeuroImage: Clinical
16
Schulz, M. A., Koch, A., Guarino, V. E., Kainmueller, D., & Ritter, K

Data augmentation via partial nonlinear registration for brain-age prediction

Oct 06, 2022 | International Workshop on Machine Learning in Clinical Neuroimaging
17
Chien, C., Seiler, M., Eitel, F., Schmitz-Hübsch, T., Paul, F., & Ritter, K.

Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity

Jul 03, 2022 | Multiple Sclerosis Journal–Experimental, Translational and Clinical
18
Rane, R. P., de Man, E. F., Kim, J., Görgen, K., Tschorn, M., Rapp, M. A., ... & IMAGEN consortium.

Structural differences in adolescent brains can predict alcohol misuse

May 26, 2022 | Elife
19
Subramaniam, P., Kossen, T., Ritter, K., Hennemuth, A., Hildebrand, K., Hilbert, A., ... & Madai, V. I.

Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks

May 01, 2022 | Medical image analysis
20
Rane, R. P., Heinz, A., & Ritter, K

AIM in Alcohol and Drug Dependence

Feb 18, 2022 | Artificial Intelligence in Medicine
21
Brasanac, J., Ramien, C., Gamradt, S., Taenzer, A., Glau, L., Ritter, K. et al

Immune signature of multiple sclerosis-associated depression

Feb 01, 2022 | Brain, Behavior, and Immunity
22
Kübler, D., Wellmann, S. K., Kaminski, J., Skowronek, C., Schneider, G. H., Neumann, W. J., ... & Kühn, A.

Nucleus basalis of Meynert predicts cognition after deep brain stimulation in Parkinson's disease

Jan 01, 2022 | Parkinsonism & Related Disorders
23
Eitel, F., Albrecht, J. P., Weygandt, M., Paul, F., & Ritter, K.

Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data

Dec 27, 2021 | scientific reports
24
Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative

MRI Image Registration Considerably Improves CNN-Based Disease Classification

Sep 21, 2021 | Machine Learning in Clinical Neuroimaging 2021
25
Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.

Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research

May 01, 2021 | Experimental Neurology
26
Ritter, M., Ott, D. V., Paul, F., Haynes, J. D., & Ritter, K.

COVID-19: a simple statistical model for predicting intensive care unit load in exponential phases of the disease

Mar 03, 2021 | Scientific Reports
27
Wakonig, K., Eitel, F., Ritter, K., Hetzer, S., Schmitz-Hübsch, T., Bellmann-Strobl, J., ... & Weygandt, M.

Altered coupling of psychological relaxation and regional volume of brain reward areas in multiple sclerosis

Oct 06, 2020 | Frontiers in Neurology
28
Stark, D., & Ritter, K.

AIM and Gender Aspects

Jan 01, 2020 | Artificial Intelligence in Medicine
29
Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification

Oct 24, 2019 | MICCAI 2019
30
Srivastava, S., Eitel, F., & Ritter, K.

Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach

Oct 10, 2019 | Challenge in Adolescent Brain Cognitive Development Neurocognitive Prediction
31
Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., ... & Ritter, K.

Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

Sep 06, 2019
32
Weygandt, M., Behrens, J., Brasanac, J., Söder, E., Meyer-Arndt, L., Wakonig, K., ... & Paul, F.

Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis

Aug 01, 2019 | Multiple sclerosis and related disorders
33
Böhle, M., Eitel, F., Weygandt, M., & Ritter, K.

Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer's disease classification

Jul 31, 2019 | Frontiers in aging neuroscience