Machine Learning / Translational Barriers

We explore challenges in applying machine learning to neuroscience and psychiatry, focusing on explainability, data noise, confounders, and generalizability to enhance clinical applications.

01
Seiler, M., Ritter, K.

Pioneering new paths: the role of generative modelling in neurological disease research

Oct 08, 2024 | Pflugers Arch - Eur J Physiol
02
Noteboom, S., Seiler, M., Chien, C., Rane, R. P., Barkhof, F., Strijbis, E.M.M,...& Ritter, K.

Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis

Jun 23, 2024 | Journal of Neurology
03
Schulz, M.A., Albrecht, J.P., Yilmaz, A., Koch, A., Kainmüller, D., Leser, U. & Ritter, K.

TLIMB-a transfer learning framework for image analysis of the brain

Mar 25, 2024 | CEUR Workshop Proceedings
04
Schulz, M.A., Bzdok, D., Haufe, S., Haynes, J.D., Ritter, K.

Performance reserves in brain-imaging-based phenotype prediction

Jan 23, 2024 | Cell Reports
05
Schulz, M.A., Hetzer, S., Eitel, F., Asseyer, S., Meyer-Arndt, L., Schmitz-Hübsch, T., et al

Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis

Sep 15, 2023 | Iscience
06
Schulz, M. A., Koch, A., Guarino, V. E., Kainmueller, D., & Ritter, K

Data augmentation via partial nonlinear registration for brain-age prediction

Oct 06, 2022 | International Workshop on Machine Learning in Clinical Neuroimaging
07
Chien, C., Seiler, M., Eitel, F., Schmitz-Hübsch, T., Paul, F., & Ritter, K.

Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity

Jul 03, 2022 | Multiple Sclerosis Journal–Experimental, Translational and Clinical
08
Schulz, M. A., Baier, S., Timmermann, B., Bzdok, D., & Witt, K.

A cognitive fingerprint in human random number generation

Oct 12, 2021 | Scientific reports
09
Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative

MRI Image Registration Considerably Improves CNN-Based Disease Classification

Sep 21, 2021 | Machine Learning in Clinical Neuroimaging 2021
10
Chapman-Rounds, M., Bhatt, U., Pazos, E., Schulz, M. A., & Georgatzis, K.

FIMAP: Feature Importance by Minimal Adversarial Perturbation

May 18, 2021 | AAAI Conference on Artificial Intelligence
11
Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.

Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research

May 01, 2021 | Experimental Neurology
12
Schulz, M. A., Yeo, B. T., Vogelstein, J. T., Mourao-Miranada, J., Kather, J. N., Kording, K., ... & Bzdok, D.

Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets

Aug 25, 2020 | Nature communications
13
Schulz, M. A., Chapman-Rounds, M., Verma, M., Bzdok, D., & Georgatzis, K.

Inferring disease subtypes from clusters in explanation space

Jul 30, 2020 | Scientific Reports
14
Stark, D., & Ritter, K.

AIM and Gender Aspects

Jan 01, 2020 | Artificial Intelligence in Medicine