Machine Learning / Precision Brain Science
We analyze neuroimaging, clinical, psychometric, smartphone, and neurobiological data within a clinical framework to derive meaningful insights and improve patient outcomes in neurology and psychiatry.
01
Seiler, M., Ritter, K.
Pioneering new paths: the role of generative modelling in neurological disease research
02
Rane, R.P., Kim, J., Umesha, A., Stark, D., Schulz, MA., Ritter, K.
DeepRepViz: Identifying Potential Confounders in Deep Learning Model Predictions
03
Hilbert, K., Weller, P., Ritter, K., Haynes, J.D., Walter, H., Lueken, U.
Design studies for clinical prediction
04
Spanagel R., Bach P., Banaschewski T., et al.
The ReCoDe addiction research consortium: Losing and regaining control over drug intake—Findings and future perspectives
05
Noteboom, S., Seiler, M., Chien, C., Rane, R. P., Barkhof, F., Strijbis, E.M.M,...& Ritter, K.
Evaluation of machine learning-based classification of clinical impairment and prediction of clinical worsening in multiple sclerosis
06
Schulz, M.A., Albrecht, J.P., Yilmaz, A., Koch, A., Kainmüller, D., Leser, U. & Ritter, K.
TLIMB-a transfer learning framework for image analysis of the brain
07
Mitrovska, A., Safari, P., Ritter, K., Shariati, B., Fischer, J. K.
Secure federated learning for Alzheimer's disease detection
08
Oliveira, M., Wilming, R., Clark, B., Budding, C., Eitel, F., Ritter, K., Haufe, S.
Benchmarking the influence of pre-training on explanation performance in MR image classification
09
Schulz, M.A., Bzdok, D., Haufe, S., Haynes, J.D., Ritter, K.
Performance reserves in brain-imaging-based phenotype prediction
10
Schulz, M.A., Hetzer, S., Eitel, F., Asseyer, S., Meyer-Arndt, L., Schmitz-Hübsch, T., et al
Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis
11
Vorisek, C., Stellmach, C., Mayer, P., Klopfenstein, S., Bures, D., Diehl, A., Henningsen, M., Ritter, K., Thun, S.
Artificial Intelligence Bias in Health Care: Web-Based Survey
12
Klingenberg, M., Stark, D., Eitel, F. et al
Higher performance for women than men in MRI-based Alzheimer’s disease detection
13
Wang, D., Honnorat, N., Fox, P. T., Ritter, K., Eickhoff, S. B., Seshadri, S., ... & Alzheimer’s Disease Neuroimaging Initiative
Deep neural network heatmaps capture Alzheimer’s disease patterns reported in a large meta-analysis of neuroimaging studies
14
Brandt, L., Ritter, K., Schneider-Thoma, J., Siafis, S., Montag, C., Ayrilmaz, H. et al
Predicting psychotic relapse following randomised discontinuation of paliperidone in individuals with schizophrenia or schizoaffective disorder: an individual participant data analysis
15
Fast, L., Temuulen, U., Villringer, K., Kufner, A., Ali, H.F., Siebert, E., Huo, S et al
Machine learning-based prediction of clinical outcomes after first-ever ischemic stroke
16
Rane, R. P., Musial, M. P. M., Beck, A., Rapp, M., Schlagenhauf, F., Banaschewski, T., ... & IMAGEN consortium
Uncontrolled eating and sensation-seeking partially explain the prediction of future binge drinking from adolescent brain structure
17
Schulz, M. A., Koch, A., Guarino, V. E., Kainmueller, D., & Ritter, K
Data augmentation via partial nonlinear registration for brain-age prediction
18
Chien, C., Seiler, M., Eitel, F., Schmitz-Hübsch, T., Paul, F., & Ritter, K.
Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity
19
Rane, R. P., de Man, E. F., Kim, J., Görgen, K., Tschorn, M., Rapp, M. A., ... & IMAGEN consortium.
Structural differences in adolescent brains can predict alcohol misuse
20
Subramaniam, P., Kossen, T., Ritter, K., Hennemuth, A., Hildebrand, K., Hilbert, A., ... & Madai, V. I.
Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks
21
Rane, R. P., Heinz, A., & Ritter, K
AIM in Alcohol and Drug Dependence
22
Brasanac, J., Ramien, C., Gamradt, S., Taenzer, A., Glau, L., Ritter, K. et al
Immune signature of multiple sclerosis-associated depression
23
Kübler, D., Wellmann, S. K., Kaminski, J., Skowronek, C., Schneider, G. H., Neumann, W. J., ... & Kühn, A.
Nucleus basalis of Meynert predicts cognition after deep brain stimulation in Parkinson's disease
24
Eitel, F., Albrecht, J. P., Weygandt, M., Paul, F., & Ritter, K.
Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
25
Klingenberg, M., Stark, D., Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative
MRI Image Registration Considerably Improves CNN-Based Disease Classification
26
Eitel, F., Schulz, M. A., Seiler, M., Walter, H., & Ritter, K.
Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research
27
Ritter, M., Ott, D. V., Paul, F., Haynes, J. D., & Ritter, K.
COVID-19: a simple statistical model for predicting intensive care unit load in exponential phases of the disease
28
Wakonig, K., Eitel, F., Ritter, K., Hetzer, S., Schmitz-Hübsch, T., Bellmann-Strobl, J., ... & Weygandt, M.
Altered coupling of psychological relaxation and regional volume of brain reward areas in multiple sclerosis
29
Stark, D., & Ritter, K.
AIM and Gender Aspects
30
Eitel, F., Ritter, K., & Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Testing the robustness of attribution methods for convolutional neural networks in MRI-based Alzheimer’s disease classification
31
Srivastava, S., Eitel, F., & Ritter, K.
Predicting fluid intelligence in adolescent brain MRI data: An ensemble approach
32
Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., ... & Ritter, K.
Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation
33
Weygandt, M., Behrens, J., Brasanac, J., Söder, E., Meyer-Arndt, L., Wakonig, K., ... & Paul, F.
Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis
34
Böhle, M., Eitel, F., Weygandt, M., & Ritter, K.
Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer's disease classification
35
Hornstein, S., Seiler, M., Hoffman, V., Nelson, B., Aschbacher, K., Ritter, K., & Hilbert, K.